MLOps with MLflow

A comprehensive MLOps platform for training, deploying, and monitoring machine learning models using MLflow.

Overview

This project provides production-ready ML pipelines for:

  • mlflow-sklearn: Scikit-learn based fraud detection pipeline
  • mlflow-tf: TensorFlow based image classification pipeline

Features

  • πŸš€ Multiple ML Frameworks: Support for TensorFlow and Scikit-learn
  • πŸ“Š Experiment Tracking: MLflow tracking for all experiments
  • πŸ”„ Reproducible Pipelines: DVC and Prefect orchestration
  • ☁️ Multi-Cloud Deployment: AWS, Azure, GCP, and local deployments
  • 🐳 Containerized: Docker support for all components

Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                     MLOps Platform                          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”‚
β”‚  β”‚  mlflow-tf   β”‚  β”‚mlflow-sklearnβ”‚  β”‚ mlflow-spark β”‚      β”‚
β”‚  β”‚  (TensorFlow)β”‚  β”‚(Scikit-learn)β”‚  β”‚   (PySpark)  β”‚      β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜      β”‚
β”‚         β”‚                 β”‚                 β”‚               β”‚
β”‚         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜               β”‚
β”‚                           β”‚                                  β”‚
β”‚                    β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”                         β”‚
β”‚                    β”‚ MLflow Serverβ”‚                         β”‚
β”‚                    β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜                         β”‚
β”‚                           β”‚                                  β”‚
β”‚         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”               β”‚
β”‚         β”‚                 β”‚                 β”‚               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”       β”‚
β”‚  β”‚    Local    β”‚  β”‚     AWS      β”‚  β”‚   Azure     β”‚       β”‚
β”‚  β”‚  (asus/tp)  β”‚  β”‚  (us-east-1) β”‚  β”‚   (cloud)   β”‚       β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Getting Started

Prerequisites

  • Python 3.8+
  • Docker (optional)
  • AWS CLI (for cloud deployments)

Quick Start

# Clone the repository
git clone https://bitbucket.org/wilsonify/mlops-with-mlflow.git
cd mlops-with-mlflow

# Install dependencies
pip install -r requirements.txt

# Run sklearn pipeline locally
cd src/mlflow-sklearn
make all

# Or run TensorFlow pipeline
cd src/mlflow-tf
python run_pipeline.py all

Project Structure

mlops-with-mlflow/
β”œβ”€β”€ src/                    # Source code
β”‚   β”œβ”€β”€ mlflow-sklearn/     # Scikit-learn pipeline
β”‚   β”œβ”€β”€ mlflow-tf/          # TensorFlow pipeline
β”‚   β”œβ”€β”€ mlflow-spark/       # Spark pipeline
β”‚   └── *-library/          # Shared libraries
β”œβ”€β”€ deploy/                 # Deployment configurations
β”‚   β”œβ”€β”€ local/              # Local deployments
β”‚   └── aws/                # AWS deployments
└── docs/                   # Documentation (this site)

Support